Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060459

RESUMO

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

2.
ACS Synth Biol ; 12(12): 3778-3782, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37943942

RESUMO

Benchmarking compares the performance of a product or service with a competitor. In a biofoundry context, capability benchmarking enables more effective use of development resources and furthering business development efforts. Biofoundries considering benchmarking activities are immediately faced with many implementation questions and decisions. While differing circumstances between biofoundries may lead to different answers to those same questions, a common framework for the benchmarking process is desirable. Perhaps the framework described here, and developed for the United States Department of Energy Agile BioFoundry, will be useful to other biofoundries around the world.


Assuntos
Benchmarking , Bioengenharia , Estados Unidos , Bioengenharia/organização & administração
3.
PLoS One ; 18(7): e0288102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418444

RESUMO

Plate-based proteomic sample preparation offers a solution to the large sample throughput demands in the biotechnology field where hundreds or thousands of engineered microbes are constructed for testing is routine. Meanwhile, sample preparation methods that work efficiently on broader microbial groups are desirable for new applications of proteomics in other fields, such as microbial communities. Here, we detail a step-by-step protocol that consists of cell lysis in an alkaline chemical buffer (NaOH/SDS) followed by protein precipitation with high-ionic strength acetone in 96-well format. The protocol works for a broad range of microbes (e.g., Gram-negative bacteria, Gram-positive bacteria, non-filamentous fungi) and the resulting proteins are ready for tryptic digestion for bottom-up quantitative proteomic analysis without the need for desalting column cleanup. The yield of protein using this protocol increases linearly with respect to the amount of starting biomass from 0.5-2.0 OD*mL of cells. By using a bench-top automated liquid dispenser, a cost-effective and environmentally-friendly option to eliminating pipette tips and reducing reagent waste, the protocol takes approximately 30 minutes to extract protein from 96 samples. Tests on mock mixtures showed expected results that the biomass composition structure is in close agreement with the experimental design. Lastly, we applied the protocol for the composition analysis of a synthetic community of environmental isolates grown on two different media. This protocol has been developed to facilitate rapid, low-variance sample preparation of hundreds of samples and allow flexibility for future protocol development.


Assuntos
Acetona , Proteômica , Acetona/química , Proteômica/métodos , Proteínas , Indicadores e Reagentes
4.
Microsyst Nanoeng ; 8: 31, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359611

RESUMO

We present a droplet-based microfluidic system that enables CRISPR-based gene editing and high-throughput screening on a chip. The microfluidic device contains a 10 × 10 element array, and each element contains sets of electrodes for two electric field-actuated operations: electrowetting for merging droplets to mix reagents and electroporation for transformation. This device can perform up to 100 genetic modification reactions in parallel, providing a scalable platform for generating the large number of engineered strains required for the combinatorial optimization of genetic pathways and predictable bioengineering. We demonstrate the system's capabilities through the CRISPR-based engineering of two test cases: (1) disruption of the function of the enzyme galactokinase (galK) in E. coli and (2) targeted engineering of the glutamine synthetase gene (glnA) and the blue-pigment synthetase gene (bpsA) to improve indigoidine production in E. coli.

5.
ACS Synth Biol ; 11(2): 522-527, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35176864

RESUMO

The ability to construct, synthesize, and edit genes and genomes at scale and with speed enables, in synergy with other tools of engineering biology, breakthrough applications with far-reaching implications for society. As SARS-CoV-2 spread around the world in early spring of 2020, researchers rapidly mobilized, using these tools in the development of diagnostics, therapeutics, and vaccines for COVID-19. The sharing of knowledge was crucial to making rapid progress. Several publications described the use of reverse genetics for the de novo construction of SARS-CoV-2 in the laboratory, one in the form of a protocol. Given the demonstrable harm caused by the virus, the unequal distribution of mitigating vaccines and therapeutics, their unknown efficacy against variants, and the interest in this research by laboratories unaccustomed to working with highly transmissible pandemic pathogens, there are risks associated with such publications, particularly as protocols. We describe considerations and offer suggestions for enhancing security in the publication of synthetic biology research and techniques. We recommend: (1) that protocol manuscripts for the de novo synthesis of certain pathogenic viruses undergo a mandatory safety and security review; (2) that if published, such papers include descriptions of the discussions or review processes that occurred regarding security considerations in the main text; and (3) the development of a governance framework for the inclusion of basic security screening during the publication process of engineering biology/synthetic biology manuscripts to build and support a safe and secure research enterprise that is able to maximize its positive impacts and minimize any negative outcomes.


Assuntos
Bioengenharia , Editoração , Medidas de Segurança/organização & administração , Genes Virais , SARS-CoV-2/genética , Biologia Sintética
6.
PLoS One ; 17(2): e0264467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213656

RESUMO

Manual proteomic sample preparation methods limit sample throughput and often lead to poor data quality when thousands of samples must be analyzed. Automated liquid handler systems are increasingly used to overcome these issues for many of the sample preparation steps. Here, we detail a step-by-step protocol to prepare samples for bottom-up proteomic analysis for Gram-negative bacterial and fungal cells. The full modular protocol consists of three optimized protocols to: (A) lyse Gram-negative bacteria and fungal cells; (B) quantify the amount of protein extracted; and (C) normalize the amount of protein and set up tryptic digestion. These protocols have been developed to facilitate rapid, low variance sample preparation of hundreds of samples, be easily implemented on widely-available Beckman-Coulter Biomek automated liquid handlers, and allow flexibility for future protocol development. By using this workflow 50 micrograms of protein from 96 samples can be prepared for tryptic digestion in under an hour. We validate these protocols by analyzing 47 Pseudomonas putida and Rhodosporidium toruloides samples and show that this modular workflow provides robust, reproducible proteomic samples for high-throughput applications. The expected results from these protocols are 94 peptide samples from Gram-negative bacterial and fungal cells prepared for bottom-up quantitative proteomic analysis without the need for desalting column cleanup and with protein relative quantity variance (CV%) below 15%.


Assuntos
Proteoma/análise , Proteômica/métodos , Automação , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Pseudomonas putida/metabolismo , Reprodutibilidade dos Testes , Rhodotorula/metabolismo , Manejo de Espécimes
7.
ACS Synth Biol ; 10(10): 2649-2660, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34449214

RESUMO

Capturing, storing, and sharing biological DNA parts data are integral parts of synthetic biology research. Here, we detail updates to the ICE biological parts registry software platform that enable these processes, describe our implementation of the Web of Registries concept using ICE, and establish Bioparts, a search portal for biological parts available in the public domain. The Web of Registries enables standalone ICE installations to securely connect and form a distributed parts database. This distributed database allows users from one registry to query and access plasmid, strain, (DNA) part, plant seed, and protein entry types in other connected registries. Users can also transfer entries from one ICE registry to another or make them publicly accessible. Bioparts, the new search portal, combines the ease and convenience of modern web search engines with the capabilities of bioinformatics search tools such as BLAST. This portal, available at bioparts.org, allows anyone to search for publicly accessible biological part information (e.g., NCBI, iGEM, SynBioHub, Addgene), including parts publicly accessible through ICE Registries. Additionally, the portal offers a REST API that enables third-party applications and tools to access the portal's functionality programmatically.


Assuntos
Software , Biologia Sintética/métodos , Biologia Computacional , Bases de Dados Factuais
8.
Front Bioeng Biotechnol ; 9: 603832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898398

RESUMO

Biological engineering of microorganisms to produce value-added chemicals is a promising route to sustainable manufacturing. However, overproduction of metabolic intermediates at high titer, rate, and yield from inexpensive substrates is challenging in non-model systems where limited information is available regarding metabolic flux and its control in production conditions. Integrated multi-omic analyses of engineered strains offers an in-depth look at metabolites and proteins directly involved in growth and production of target and non-target bioproducts. Here we applied multi-omic analyses to overproduction of the polymer precursor 3-hydroxypropionic acid (3HP) in the filamentous fungus Aspergillus pseudoterreus. A synthetic pathway consisting of aspartate decarboxylase, beta-alanine pyruvate transaminase, and 3HP dehydrogenase was designed and built for A. pseudoterreus. Strains with single- and multi-copy integration events were isolated and multi-omics analysis consisting of intracellular and extracellular metabolomics and targeted and global proteomics was used to interrogate the strains in shake-flask and bioreactor conditions. Production of a variety of co-products (organic acids and glycerol) and oxidative degradation of 3HP were identified as metabolic pathways competing with 3HP production. Intracellular accumulation of nitrogen as 2,4-diaminobutanoate was identified as an off-target nitrogen sink that may also limit flux through the engineered 3HP pathway. Elimination of the high-expression oxidative 3HP degradation pathway by deletion of a putative malonate semialdehyde dehydrogenase improved the yield of 3HP by 3.4 × after 10 days in shake-flask culture. This is the first report of 3HP production in a filamentous fungus amenable to industrial scale biomanufacturing of organic acids at high titer and low pH.

9.
Metab Eng ; 63: 34-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221420

RESUMO

Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources, and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing, and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.


Assuntos
Aprendizado de Máquina , Engenharia Metabólica , Algoritmos , Edição de Genes
10.
PLoS One ; 15(11): e0242157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175889

RESUMO

Microfluidic applications have expanded greatly over the past decade. For the most part, however, each microfluidics platform is developed with a specific task in mind, rather than as a general-purpose device with a wide-range of functionality. Here, we show how a microfluidic system, originally developed to investigate protein phase behavior, can be modified and repurposed for another application, namely DNA construction. We added new programable controllers to direct the flow of reagents across the chip. We designed the assembly of a combinatorial Golden Gate DNA library using TeselaGen DESIGN software and used the repurposed microfluidics platform to assemble the designed library from off-chip prepared DNA assembly pieces. Further experiments verified the sequences and function of the on-chip assembled DNA constructs.


Assuntos
DNA/análise , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microfluídica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Biologia Computacional , Escherichia coli/metabolismo , Reconhecimento Automatizado de Padrão , Reação em Cadeia da Polimerase , Software
11.
Methods Mol Biol ; 2205: 3-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32809190

RESUMO

Biological computer-aided design and manufacturing (bioCAD/CAM) tools facilitate the design and build processes of engineering biological systems using iterative design-build-test-learn (DBTL) cycles. In this book chapter, we highlight some of the bioCAD/CAM tools developed and used at the US Department of Energy (DOE) Joint Genome Institute (JGI), Joint BioEnergy Institute (JBEI), and Agile BioFoundry (ABF). We demonstrate the use of these bioCAD/CAM tools on a common workflow for designing and building a multigene pathway in a hierarchical fashion. Each tool presented in this book chapter is specifically tailored to support one or more specific steps in a workflow, can be integrated with the others into design and build workflows, and can be deployed at academic, government, or commercial entities.


Assuntos
Biologia Sintética/métodos , Desenho Assistido por Computador , Software , Fluxo de Trabalho
12.
Methods Mol Biol ; 2205: 19-47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32809191

RESUMO

Modern DNA assembly techniques are known for their potential to link multiple large DNA fragments together into even larger constructs in single pot reactions that are easier to automate and work more reliably than traditional cloning methods. The simplicity of the chemistry is in contrast to the increased work needed to design optimal reactions that maximize DNA fragment reuse, minimize cost, and organize thousands of potential chemical reactions. Here we examine available DNA assembly methods and describe through example, the construction of a complex but not atypical combinatorial and hierarchical library using protocols that are generated automatically with the assistance of modern synthetic biology software.


Assuntos
DNA/genética , Biologia Sintética/métodos , Clonagem Molecular/métodos , Biblioteca Gênica , Software
14.
ACS Synth Biol ; 9(3): 468-474, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149502

RESUMO

Climate change necessitates the development of CO2 neutral or negative routes to chemicals currently produced from fossil carbon. In this paper we demonstrate a pathway from the renewable resource glucose to next generation biofuel isopentanol by pairing the isovaleryl-CoA biosynthesis pathway from Myxococcus xanthus and a butyryl-CoA reductase from Clostridium acetobutylicum. The best plasmid and Escherichia coli strain combination makes 80.50 ± 8.08 (SD) mg/L of isopentanol after 36 h under microaerobic conditions with an oleyl alcohol overlay. In addition, the system also shows a strong preference for isopentanol production over prenol in microaerobic conditions. Finally, the pathway requires zero adenosine triphosphate and can be paired theoretically with nonoxidative glycolysis, the combination being redox balanced from glucose thus avoiding unnecessary carbon loss as CO2. These pathway properties make the isovaleryl-CoA pathway an attractive isopentanol production route for further optimization.


Assuntos
Trifosfato de Adenosina/metabolismo , Biocombustíveis , Carbono/metabolismo , Myxococcus xanthus/metabolismo , Pentanóis/metabolismo , Biologia Sintética/métodos , Acil Coenzima A/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Escherichia coli/genética , Hidroliases/genética , Hidroliases/metabolismo , Modelos Biológicos , Myxococcus xanthus/genética , Plasmídeos/genética
15.
BMC Genomics ; 21(1): 85, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992180

RESUMO

BACKGROUND: Next generation sequencing (NGS) has become a universal practice in modern molecular biology. As the throughput of sequencing experiments increases, the preparation of conventional multiplexed libraries becomes more labor intensive. Conventional library preparation typically requires quality control (QC) testing for individual libraries such as amplification success evaluation and quantification, none of which occur until the end of the library preparation process. RESULTS: In this study, we address the need for a more streamlined high-throughput NGS workflow by tethering real-time quantitative PCR (qPCR) to conventional workflows to save time and implement single tube and single reagent QC. We modified two distinct library preparation workflows by replacing PCR and quantification with qPCR using SYBR Green I. qPCR enabled individual library quantification for pooling in a single tube without the need for additional reagents. Additionally, a melting curve analysis was implemented as an intermediate QC test to confirm successful amplification. Sequencing analysis showed comparable percent reads for each indexed library, demonstrating that pooling calculations based on qPCR allow for an even representation of sequencing reads. To aid the modified workflow, a software toolkit was developed and used to generate pooling instructions and analyze qPCR and melting curve data. CONCLUSIONS: We successfully applied fluorescent amplification for next generation sequencing (FA-NGS) library preparation to both plasmids and bacterial genomes. As a result of using qPCR for quantification and proceeding directly to library pooling, the modified library preparation workflow has fewer overall steps. Therefore, we speculate that the FA-NGS workflow has less risk of user error. The melting curve analysis provides the necessary QC test to identify and troubleshoot library failures prior to sequencing. While this study demonstrates the value of FA-NGS for plasmid or gDNA libraries, we speculate that its versatility could lead to successful application across other library types.


Assuntos
Corantes Fluorescentes , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Amplificação de Ácido Nucleico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real
16.
Genes (Basel) ; 11(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963235

RESUMO

Enzymatic oligonucleotide synthesis methods based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) promise to enable the de novo synthesis of long oligonucleotides under mild, aqueous conditions. Intermediates with a 3' terminal structure (hairpins) will inevitably arise during synthesis, but TdT has poor activity on these structured substrates, limiting its usefulness for oligonucleotide synthesis. Here, we described two parallel efforts to improve the activity of TdT on hairpins: (1) optimization of the concentrations of the divalent cation cofactors and (2) engineering TdT for enhanced thermostability, enabling reactions at elevated temperatures. By combining both of these improvements, we obtained a ~10-fold increase in the elongation rate of a guanine-cytosine hairpin.


Assuntos
DNA Nucleotidilexotransferase/química , DNA/síntese química , Animais , DNA/química , DNA Nucleotidilexotransferase/genética , Estabilidade Enzimática/genética , Camundongos , Engenharia de Proteínas , Especificidade por Substrato
17.
ACS Synth Biol ; 8(10): 2238-2247, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31576747

RESUMO

Lepidoptera (butterflies and moths) make the six-carbon compounds homoisopentenyl pyrophosphate (HIPP) and homodimethylallyl pyrophosphate (HDMAPP) that are incorporated into 16, 17, and 18 carbon farnesyl pyrophosphate (FPP) analogues. In this work we heterologously expressed the lepidopteran modified mevalonate pathway, a propionyl-CoA ligase, and terpene cyclases in E. coli to produce several novel terpenes containing 16 carbons. Changing the terpene cyclase generated different novel terpene product profiles. To further validate the new compounds we confirmed 13C propionate was incorporated, and that the masses and fragmentation patterns were consistent with novel 16 carbon terpenes by GC-QTOF. On the basis of the available farnesyl pyrophosphate analogues lepidoptera produce, this approach should greatly expand the reachable biochemical space with applications in areas where terpenes have traditionally found uses.


Assuntos
Ácido Mevalônico/metabolismo , Terpenos/metabolismo , Animais , Escherichia coli/metabolismo , Lepidópteros/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo
18.
J Proteome Res ; 18(10): 3752-3761, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31436101

RESUMO

Mass spectrometry-based quantitative proteomic analysis has proven valuable for clinical and biotechnology-related research and development. Improvements in sensitivity, resolution, and robustness of mass analyzers have also added value. However, manual sample preparation protocols are often a bottleneck for sample throughput and can lead to poor reproducibility, especially for applications where thousands of samples per month must be analyzed. To alleviate these issues, we developed a "cells-to-peptides" automated workflow for Gram-negative bacteria and fungi that includes cell lysis, protein precipitation, resuspension, quantification, normalization, and tryptic digestion. The workflow takes 2 h to process 96 samples from cell pellets to the initiation of the tryptic digestion step and can process 384 samples in parallel. We measured the efficiency of protein extraction from various amounts of cell biomass and optimized the process for standard liquid chromatography-mass spectrometry systems. The automated workflow was tested by preparing 96 Escherichia coli samples and quantifying over 600 peptides that resulted in a median coefficient of variation of 15.8%. Similar technical variance was observed for three other organisms as measured by highly multiplexed LC-MRM-MS acquisition methods. These results show that this automated sample preparation workflow provides robust, reproducible proteomic samples for high-throughput applications.


Assuntos
Células/química , Técnicas Microbiológicas/métodos , Peptídeos/isolamento & purificação , Proteômica/métodos , Manejo de Espécimes/métodos , Fluxo de Trabalho , Automação , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/química , Proteínas Fúngicas/análise , Proteínas Fúngicas/isolamento & purificação , Fungos/química , Bactérias Gram-Negativas/química , Humanos , Peptídeos/análise , Manejo de Espécimes/normas
19.
J Ind Microbiol Biotechnol ; 46(8): 1225-1235, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115703

RESUMO

Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,ß-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3-ß11 and ß7-α2. From the catalytic Asp located in α3 to a conserved Pro in ß11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.


Assuntos
Policetídeo Sintases/química , Sítios de Ligação , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Modelos Moleculares , Policetídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
20.
ACS Synth Biol ; 8(6): 1337-1351, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31072100

RESUMO

The Design-Build-Test-Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient approach to strain development than historical efforts in biofuels and biobased products. Here, we report on implementation of two DBTL cycles to optimize 1-dodecanol production from glucose using 60 engineered Escherichia coli MG1655 strains. The first DBTL cycle employed a simple strategy to learn efficiently from a relatively small number of strains (36), wherein only the choice of ribosome-binding sites and an acyl-ACP/acyl-CoA reductase were modulated in a single pathway operon including genes encoding a thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase (Maqu_2507, Maqu_2220, or Acr1), and an acyl-CoA synthetase (FadD). Measured variables included concentrations of dodecanol and all proteins in the engineered pathway. We used the data produced in the first DBTL cycle to train several machine-learning algorithms and to suggest protein profiles for the second DBTL cycle that would increase production. These strategies resulted in a 21% increase in dodecanol titer in Cycle 2 (up to 0.83 g/L, which is more than 6-fold greater than previously reported batch values for minimal medium). Beyond specific lessons learned about optimizing dodecanol titer in E. coli, this study had findings of broader relevance across synthetic biology applications, such as the importance of sequencing checks on plasmids in production strains as well as in cloning strains, and the critical need for more accurate protein expression predictive tools.


Assuntos
Dodecanol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aprendizado de Máquina , Engenharia Metabólica/métodos , Algoritmos , Redes e Vias Metabólicas/genética , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...